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a b s t r a c t

For reasons of food safety, packaging and food contact materials must be submitted to migration tests.

Testing of silicone moulds is often very laborious, since three replicate tests are required to decide

about their compliancy. This paper presents a general modelling framework to predict the sample’s

compliance or non-compliance using results of the first two migration tests. It compares the outcomes

of models with multiple continuous predictors with a class of models involving latent and dummy

variables. The model’s prediction ability was tested using cross and external validations, i.e. model

revalidation each time a new measurement set became available. At the overall migration limit of

10 mg dm�2, the relative uncertainty on a prediction was estimated to be �10%. Taking the default

values for a and b equal to 0.05, the maximum value that can be predicted for sample compliance was

therefore 7 mg dm�2. Beyond this limit the risk for false compliant results increases significantly, and a

third migration test should be performed. The result of this latter test defines the sample’s compliance

or non-compliance. Propositions for compliancy control inspired by the current dioxin control strategy

are discussed.

& 2012 Elsevier B.V. All rights reserved.
1. Introduction

Polymerized siloxanes or polysiloxanes are mixed inorganic–
organic polymers, consisting of an inorganic backbone of alter-
nating silicon and oxygen atoms with organic side groups
attached to the silicon atoms. Two organic functional groups,
often methyl or phenyl groups, are attached to each silicon atom.
Polysiloxanes are commonly termed silicones. These are generally
considered as stable and inert. Silicone fluids are predominantly
used as hydraulic fluids and as adhesives, lubricants, water
repellents, and protective coatings. Silicone rubbers and elasto-
mers, on the other hand, are used as electrical insulators in
encapsulations, coatings, and varnishes; as gaskets and caulking
material; in specialized tubing; as automobile engine compo-
nents; as flexible windows in face masks and air locks; for
laminating glass cloth; as surgical membranes and implants and
also as non-stick moulds for baking and freezing processes in the
food industry, in restaurants and pastry shops.

Bakery moulds can be used in both conventional and micro-
wave ovens as well as in freezers. Moreover, they can be put
directly from the freezer into the oven. The flexibility and non-
stick features of silicones facilitate the extraction of food products
ll rights reserved.
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after cooling down. Otherwise, frozen foods can be unmoulded
without thawing. Bending or twisting silicone bakeware makes
unmoulding considerably less challenging. Bakery moulds are
readily advertised as soft, non-toxic and high conductivity sili-
cones, reusable up to 1000 bakings and more. During the last
decade flexible silicone baking moulds have achieved a quite
significant market share; they are nowadays marketed as user
friendly and cheaper alternatives to traditional metal bakeware.

It should not be forgotten, however, that food contact and
packaging materials contain chemical substances, which can
migrate into the food during processing and storage. The scientific
literature emits some concern and recommends proper usage of
the moulds to restrict migration into different foodstuffs [1–5].
Even when silicones are characterized by elevated thermal
stability and pronounced resistance to aging, temperature rises
lead to depolymerization of the elastomer and subsequent vola-
tilization and migration [1–2]. Cyclic organosiloxane oligomers
are commonly identified as migrating substances or migrants.
Linear, partly hydroxyl-terminated, organosiloxanes are not fre-
quently found in the samples [3]. Additionally, the type of food
and especially its fat content are highly determining parameters
for migration of the latter compounds [4]. Migrants are increas-
ingly becoming subject to control and regulation [5,6]. For
materials and articles intended to come into repeated contact
with foodstuffs, the migration tests have to be carried out three
times on one single object in accordance with the conditions laid
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down in both the recent EU regulation 10/2011 as well as the
European Norm EN 1186. On each occasion another sample of the
food or food simulant is to be used. The decision concerning
compliance is then based on the migration value found in the
third test. Conclusive proof that migration does not increase in
the second and third tests when the migration limit is not
exceeded in the first test makes further testing redundant.

Triplicate testing of silicone objects is a laborious and expen-
sive matter, which can be avoided by mathematically determin-
ing the final migration value with a predictive algorithm, based
on the first and second migration values. This mathematical
approach is here illustrated with data obtained for overall migra-
tion from silicones; it is, however, applicable to all compliance
tests, requiring triplicate analyses. On one hand, the suggested
procedure could reduce the test period by one third, e.g. a time
saving of �10 days for traditional global migration experiments
(10 days at 40 1C) and of �1 day at the test conditions of the
present study. Moreover, there is an additional benefit since many
molecule specific analyses are carried out in duplicate. The EU
regulation strongly recommends strict quality control and the
European norm NBN EN 1186 requires three repetitions of
chromatographic analyses.

In this paper, we apply multivariate modelling [7] to predict
the migration values from silicone moulds. We compare the
outcomes of different regression methods such as multiple linear
regression (MLR), principal components regression (PCR) and
partial least squares (PLS). These models do not compete with
deterministic migration models based on diffusion and reparti-
tion coefficients (e.g. in [8]); they involve linear combinations of
explanatory variables instead of hypothetical functional forms
derived from an underlying theory. Therefore, multivariate mod-
elling is also applicable, when no fundamental theory exists, and
can provide an independent check on the validity of existing
deterministic models.
2. Materials and methods

2.1. Migration testing

Silicone moulds from various manufacturers were submitted
to overall migration tests; moulds from supermarkets and from
retail trade were sampled by the Belgian Federal Agency for the
Safety of the Food Chain (FASFC). Prior to testing, surface dust of
the sample moulds was removed. The samples were neither
rinsed with water nor cleaned with household detergents. Fol-
lowing the European Standard EN 1186-1, all samples were
brought into contact with volatile food simulants, which were
evaporated to dryness after migration. The remaining residues
were gravimetrically determined. For each reusable object the
overall migration test was 3 times repeated (European Norm EN
1186). As laid down in the EU Regulation 10/2011, the migration
experiments were done with the substitute fatty food simulant
ethanol (95%, v-v). Ethanol (AnalaR NORMAPUR, BDH Prolabos),
obtained from VWR International (Haasrode, Belgium), and Milli-
pore Milli Q water were used. The moulds were tested during
4.5 h at 60 1C following the Directive 82/711/EC, since the most
recent EU Regulation 10/2011 was not applicable at the moment
the experiments were carried out. For the tests a Binder drying
oven was used; residues were weighed with a Mettler Toledo
precision balance.

The contact interface of the silicone moulds and the food
simulant depended on their shapes and sizes. For samples with a
large flat surface the migration cell type B, as described in Annex
C of the European Standard 1186, was used. All cell spare parts
are manufactured in stainless steel; sealing between food contact
material and food simulant is done with O-rings. The food
simulant contact area amounts to 1 dm2. Objects in a tub or tray
form were filled with a known volume of the simulant. Objects
with very complex shapes were immersed in the simulant;
determined contact areas of the samples were taken into account.
Overall migration tests were carried out in duplicate; the results
were expressed in mg dm�2. Weighed residues were divided by a
factor 5. This reduction factor was always applied to evaluate the
observed migration levels, since migration into the simulant is
generally accepted to exceed the migration into real foodstuffs
(85/572/EEC). The new EU Regulation 10/2011 imposes the food
simulant oil and mentions a reduction factor of 3. These new test
conditions will be effective in 2013.

2.2. MLR/PCR/PLS regressions

Multivariate regressions methods such as MLR, PCR and PLS
have the common characteristic of generating models that
involve linear combinations of explanatory variables, their differ-
ences lie in the way how correlations between variables are
handled. In MLR the dependent variable is regressed on the
predictor variables directly. Yet, when several predictors are
linearly correlated with each other, this may result in:
(i) regression coefficients that are very sensitive to even small
fluctuations of the response variable, (ii) standard errors that are
high for the regression coefficients, and hence (iii) degradation of
the predictions’ precision [9]. PCR and PLS are both methods that
solve the colinearity problem. In those methods, new predictors,
known as components, are constructed as linear combinations of
the original predictor variables. PCR creates these new compo-
nents to explain the observed variability in the predictors, with-
out taking into account the response variable [10]. PLS achieves
a compromise between two objectives [11,12], i.e. maximize
the explained variance of the predictors (principle of PCA) and
(ii) optimize the correlations between the predictors and the
dependent variable(s) (principle of regression). Regardless of the
procedure (either MLR, PCR or PLS), the best model is chosen to
provide an optimal balance between fit and predictive ability.

2.3. Model selection criteria

In the assessment of model performance and relevance three
quality indices were used.
�
 The coefficient of multiple determinations (R2), which indi-
cates the proportion of variability in a data set accounted for
by the statistical model. During the selection stage of model
building, we used the determination coefficient adjusted for
the number of explanatory terms in the model:

AdjR2
¼ 1�ð1�R2

ÞU
n�1

df

� �
,

where df is the degrees of freedom. Unlike R2, AdjR2 increases
only if the new term improves the model more than would be
expected by chance.

�
 The root mean squared error (RMSE) or residual standard

deviation, which yields a measure of the spread of the
measurements around the fitted model:

RMSE¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
ðyi�f ðxiÞÞ

2

df

s

�
 The root mean squared prediction error (RMSPE), which yields
a measure of how the outcome of an experiment can reliably
be predicted. RMSPE involves the predicted residual error sum



Table 1
Descriptive statistics for silicone moulds. According to the European Norm EN

1186, the overall migration test was 3 times repeated (X1, X2, X3). Values in

mg dm�2 are medians with interquartile range in brackets.

Treatment groups X1 X2 X3

Filled samples 18.0 (17.1) 10.5 (10.4) 6.4 (7.2)

Immersed samples 18.4 (7.5) 9.6 (4.0) 5.3 (2.6)

Single-side tested samples 15.8 (3.5) 10.8 (2.4) 7.4 (1.8)
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of squares or PRESS statistic that requires a cross-validation
[13]:

Press¼
X
ðyi�f ðxiÞð�iÞÞ

2

where f(xi)(� i) is the prediction of the ith observation when it is
not included in the training set used for the estimation of the
model parameters. RMSPE is then computed according to:

RMSPE¼

ffiffiffiffiffiffiffiffiffiffiffi
Press

df

s

Moreover, a large difference between RMSPE and RMSE indi-
cates that the model is sensitive to the presence or absence of

certain observations in the model.
2.4. Outlier diagnostics

There are a variety of statistics for detecting outliers available
[14]. We choose to consider only two of these tools, the studen-
tized deleted residuals and Cook’s distance, as they have a natural
interpretation in the context of the cross validation used in this
study:
�

20
The studentized deleted residual (SDR) is a useful index to find
those values of the response variable which are unusual with
respect to the fitted model:

SDRi ¼
yi�f ðxiÞð�iÞ

RMSEU
ffiffiffiffiffiffiffiffiffiffiffiffi
1�hii

p
where hii is the ith diagonal element of the hat matrix:
XT

UðXT
UXÞ�1

UX. Since the degree of freedom is quite large here
(df4200), we could use the rule of thumb that SDR42 should
be uncommon and SDR43 should be rare.

�
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Cook’s distance (Di) combines both the hat-diagonal and
studentized deleted residual to give a statistic for detecting
observations that actually influence the estimation of model
parameters:

Di ¼
SDR2

i

p
U

hii

1�hii

where p is the number of parameters in the model. Potentially
influential points are characterized by Di�values41.
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Fig. 1. PCA score plot of the silicone mould dataset. The numbering of the

observations refers to the sampling sequence. The ellipse corresponds to the

99% confidence region as given by Hotelling’s T2.
2.5. Predictions of new response

The uncertainty in a new response predicted from a linear
combination of predictor-values is composed of (i) the uncer-
tainty of the regression line that can be assessed with the
variance–covariance matrix¼MSEUðXT

UXÞ�1, and (ii) the variabil-
ity of the measurements that can be estimated by RMSE (see
above). Consequently the standard deviation of a new response y0
predicted at x0 is given by [9]:

sy0
¼ RMSEU

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

m
þxT

0UðX
T
UXÞ�1

Ux0

r
ð1Þ

where x0 is the matrix of the predictor-values, x0
T its transpose

and m is the number of replicates.
3. Results

3.1. Data structure and analysis

The data, used to develop and validate the regression models,
represents a set of 229 silicone moulds from various manufacturers
sampled between 2007 and 2011 as part of a monitoring programme
for food security. The effect of mould size/shape was first investigated
since this effect could impact the estimation of the model parameters
and, hence, the determination of the predicted values for all observa-
tions. The samples were splitted in three groups: filled, immersed and
single-sided tested samples. Table 1 indicates that the differences in
the median values among the treatment groups are not statistically
significant (Kruskal–Wallis test, p¼0.168). The measurements
decreased monotonically from the first (X1) to the third (X3) migration
tests (Kruskal–Wallis test, po0.001), although very rarely a measure-
ment exceeded a previous one with X1rX2 in 1% cases and X2rX3 in
2% cases.

A Principal Component Analysis (PCA) results in a two-factor
model explaining 99.5% of the variance. The first factor is the
more important and accounts for more than 91% of the modelled
variation. The score plot, which provides a map of the observa-
tions, is depicted in Fig. 1. Data points close to each other have
similar properties, whereas those far from each other are dissim-
ilar with respect to their migration profiles. For example, single-
sided tested samples appear close to the centre (origin) of the
plane, indicating that they have average properties. In contrast
herewith, several data points belonging to the group of filled
samples are located together in the upper right corner; these
observations (#10, 29, 37, 43, 151 and 165) are characterized by
the highest values for migration test 3. Finally, it can be observed
that 5 data points (#10, 29, 37, 43, 55 and 151) fall outside the
ellipse corresponding to the 99% confidence region, as specified
by the Hotelling’s T2 statistic [15]. From a statistical point of view,
instead of the expected 1% that exceeds the 99th percentiles, 2%
does so. This is well acceptable since the 229 results do not
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Fig. 2. Multiple two-variable scatterplots of the silicone mould dataset. The dashed line indicates the limits to be found in the third migration test for sample compliance.

Table 2
Statistics for different models applied to the silicone mould data. TG is a dummy

variable reflecting the attachment to groups (filled, immersed and single-sided

tested samples).

Training set Predictors in Eq. AdjR2 RMSPE

MLR X1, X2 0.910 1.18

PCR X1, X1
2, X2, X2

2 and product terms 0.907 1.43

PLS X1, X1
2, X2, X2

2 and product terms 0.916 1.25

MLR X1, X2, TG 0.914 1.19

PCR X1, X1
2, X2, X2

2, TG and product terms 0.914 1.46

PLS X1, X1
2, X2, X2

2, TG and product terms 0.916 1.30

Validation sets Predictors in Eq. R2 RMSE
MLR X1, X2 0.953 0.86

PCR X1, X1
2, X2, X2

2 and product terms 0.955 0.89

PLS X1, X1
2, X2, X2

2 and product terms 0.955 0.88

MLR X1, X2, TG 0.951 0.86

PCR X1, X1
2, X2, X2

2, TG and product terms 0.289 3.53

PLS X1, X1
2, X2, X2

2, TG and product terms 0.949 1.02
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represent 229 realizations of the same experiment, but corre-
spond to a four year sampling period. Therefore, the variability is
not only due to random noise, but also due to changes in
laboratory conditions. As seen in Fig. 2, X2 is the best predictor
of X3, while X1 appears as a covariate that could impact the
relationship between X2 and X3. About 11% of the samples are not
compliant, i.e., the third migration value is greater than the
overall limit of 10 mg dm�2, and many of those belong to the
group filled samples. A regression trees indicate moreover that if
X1 lies in [15.0, 53.4[ then X3Z10 in 20% cases; if X2 lies in [12.3,
39.0[ then X3Z10 in 50% cases, whereas if both X1Z20.0 and
X2Z15.0 then X3Z10 in 75% cases.

3.2. Model building

To test whether X3 could accurately be predicted using the first
and second migration values, cross and external validations were
carried out in the following way: (i) the dataset was split into two
moieties, (ii) the model was developed on data gathered between
10/2007 and 06/2010 using the leave-one-out method (cross
validation), and (iii) the model was tested on data gathered
between 08/2010 and 12/2011 (external validation). In the case
of MLR regressions, we considered additive type models only to
avoid mathematical difficulties that can result in unreliable
predictions (see Section 2):

Y ¼ b0þ
X

biUXiþe ð2Þ

In practice Eq. (2) may not be fully suitable and increasing
model complexity is achieved by adding squared (i¼ j) and
interaction terms (ia j) between predictor variables:

Y ¼ b0þ
X

biUXiþ
X

bi,jUXiUXjþe ð3Þ

With Eq. (3), conditions are fulfilled for PCR and/or PLS
modelling, i.e. regression analysis with many noisy and collinear
sets of predictors and response variables. Additionally, for both
type of equations, models including quantitative (X1, X2) and
dummy predictors that reflect attachment to categories (filled,
immersed and single-sided tested samples) were tested. Table 2
summarizes the results for all different models applied to the
training and validation sets. Criteria for model selection (see
Section 2) was chosen to provide an optimal balance between
fit (R2 and AdjR2) and predictive ability (RMSPE and RMSE).
Overall, the goodness of fit does not increase significantly with
model complexity, and MLR, characterized by the lowest values of
RMSPE and RMSE, appear to be the best for prediction purposes.
Almost identical RMSPE and RMSE values are obtained with the
model including the dummy variables but the simpler model
involving X1 and X2 is to be preferred:

X3 ¼�0:17UX1ðSE¼ 0:015Þþ0:92UX2ðSE¼ 0:026Þ ð4Þ

where Xi variables are expressed in mg/dm2.

3.3. Predictions made on the basis of the fitted line

The relationship between the measured and predicted values
for the whole dataset is illustrated in Fig. 3. Seven data points
(#29, 43, 49, 50, 76, 96, and 125) have unusual responses relative
to the regression model because they lie off the line defined by
the other observations. For those samples, the absolute values of
the studentized deleted residual are high (43) but Cook’s
distances remain below the cut-off value of 1 usually quoted for
spotting influential or leverage points (Table 3). We can therefore
conclude that these observations have a minimal impact on the
estimation of model parameters, but could alter the predictive
power by inflating the residual standard deviation or RMSE. As
seen in Table 3 RMSE, which yields a measure of the spread of
the data points around the fitted line, increases from �0.8 to
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�1.0 mg dm�2; whether the outlying observations are consid-
ered or not. It is important to note that this variance inflation does
not impact the mean and the variability of the predicted values
amongst treatment groups. In other words, although the model
was built using a set of relatively heterogeneous data, the quality
of the prediction is equivalent whatever the type of mould tested,
and whether the testing was done by ethanol volume vs. mould
surface area (Table 3). The uncertainty of a response predicted
from a new set of measurements is calculated with Eq. (1). At the
overall migration limit of 10 mg dm�2, this uncertainty amounts
to 1.04 mg dm�2, i.e. about 10%. Keeping the risk for both false
positive or false negative results at an acceptable level
(a¼b¼0.05) [16] the maximum value that can be predicted by
the model for compliance with the regulations is then
�7 mg dm�2

ði:e: 10�3:29sy0
Þ. Beyond this limit the risk for false

negative results may increase significantly. From Fig. 3, it can be
seen that with a prediction value of r7, the third migration value
never exceeded 10 mg dm�2.
4. Discussion

4.1. Suggestions for compliancy control

Consumers are nowadays very concerned about food safety, since
contaminating chemicals are known to enter the environment and,
inherently, the food chain by many different pathways. In addition to
deploying molecule specific strategies for the ecological as well as
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Fig. 3. Relationship between measured and predicted migration values found for

the silicone mould dataset.

Table 3
Studentized deleted residuals and Cook0 distance from Eq. (3) for o

Treatment

groups

OBS Stud. del. res.

Filled samples 29 5.02

43 3.41

49 �3.29

Immersed samples 50 3.73

76 �3.77

96 �4.54

Single sided tested samples 125 �3.02

Overall RMSE
public health risk assessments of the pollutants, it is necessary to
apply and explore other strategies, such as the use of bio-assays and
biosensors for the identification of pollutants responsible for parti-
cular adverse effects [17]. This strengthens the need for a well-
organized food control and elevated numbers of sample analyses.
Recent and modern control strategies often apply a two-step
approach, whereby screening of multifold samples by rapid and
cheaper techniques is combined with sophisticated and very expen-
sive confirmatory techniques for suspect samples.

An interesting showcase is the commonly accepted approach
for control on dioxin contaminations in food and feed. In a first
step, high numbers of samples are rapidly screened; for this
purpose the CALUX technique is very often used [18]. Afterwards
suspect samples and a restricted number of QC/QA samples are
analyzed by sophisticated chromatographic techniques. Similar to
this system, we suggest either the green–orange–red or the
green–red approach (Fig. 4).

The former one distinguishes a green zone with all compliant
values, a red zone with all non-compliant values and an inter-
mediate orange zone. Values within the green zone do not
exceed the value of 7 mg dm�2, this zone corresponds per defini-
tion to those samples that are fit for the market. Values within the
red zone exceed the value of 10 mg dm�2; the corresponding
samples should not become available to the consumers. The orange
zone from 7 to 10 mg dm�2 gathers migration values that are not
significantly different from the legal norm value of 10 mg dm�2. A
third migration test would then be required and the results of the
third tests define the sample’s compliance or non-compliance.
bservations #29, 43, 49, 50, 76, 96, and 125.

Cook’s dist. RMSEwithout outliers RMSEwith outliers

0.304 0.7 1.1

0.421

0.060

0.076 0.8 1.0

0.097

0.22

0.045 0.9 1.0

0.8 1.0

Predictions [mg dm-2]
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y)
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Fig. 4. Probability distribution function p(y) for the migration values predicted

with Eq. (3). Taking the default values a¼b¼0.05, the multiplication factor for the

expected uncertainty sy0
(Eq. (1)) is 3.29(¼2�1.645).
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The green–red system, on the other hand, distinguishes com-
pliant and suspect samples only. This approach is inspired by the
current dioxin control strategy and requires an additional third
migration test for all samples with a predicted migration value
exceeding 7 mg dm�2. The result of the third test would then be
decisive about compliance or non-compliance of the sample.

For reasons of food safety control the green–orange–red
approach only would be acceptable. It eliminates non-compliant
samples from the market and consumers do not face negative
effects of excessive migration from silicone baking forms. Migra-
tion limits, and more particularly specific migration limits, are
derived from toxicological evidence and set tolerable daily intake
values. Higher intakes, and hence exposures, might generate
adverse health effects.

Otherwise, the green–red approach provides a third migration
value for those samples that are considered suspect. This might
prove interesting for reasons of research and development.

In either cases substantial time and energy profit can be
expected. Additionally, it might be a good idea to use this
approach for other problems, such as the migration of contami-
nants from kitchen utensils. The Rapid Alert System for Food
and Feed (https://webgate.ec.europa.eu/rasff-window/portal/index)
publishes approximately 10% notifications on packaging and food
contact materials. Very often these notifications refer to organic food
contamination, such as the migration of melamine from kitchen
utensils into acetic acid. Sometimes they refer to metal contamina-
tions, such as migration of lead, cadmium and chromium.
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